How the proof of the strong perfect graph conjecture was found

نویسندگان

  • Paul Seymour
  • Maria Chudnovsky
  • Neil Robertson
  • Robin Thomas
  • Adrian Bondy
چکیده

In 1961, Claude Berge proposed the \strong perfect graph conjecture", probably the most beautiful open question in graph theory. It was answered just before his death in 2002. This is an overview of the solution, together with an account of some of the ideas that eventually brought us to the answer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the oriented perfect path double cover conjecture

‎An  oriented perfect path double cover (OPPDC) of a‎ ‎graph $G$ is a collection of directed paths in the symmetric‎ ‎orientation $G_s$ of‎ ‎$G$ such that‎ ‎each arc‎ ‎of $G_s$ lies in exactly one of the paths and each‎ ‎vertex of $G$ appears just once as a beginning and just once as an‎ ‎end of a path‎. ‎Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete‎ ‎Math‎. ‎276 (2004) 287-294) conjectured that ...

متن کامل

A note on Fouquet-Vanherpe’s question and Fulkerson conjecture

‎The excessive index of a bridgeless cubic graph $G$ is the least integer $k$‎, ‎such that $G$ can be covered by $k$ perfect matchings‎. ‎An equivalent form of Fulkerson conjecture (due to Berge) is that every bridgeless‎ ‎cubic graph has excessive index at most five‎. ‎Clearly‎, ‎Petersen graph is a cyclically 4-edge-connected snark with excessive index at least 5‎, ‎so Fouquet and Vanherpe as...

متن کامل

The Strong Perfect Graph Conjecture: 40 years of attempts, and its resolution

The Strong Perfect Graph Conjecture (SPGC) was certainly one of the most challenging conjectures in graph theory. During more than four decades, numerous attempts were made to solve it, by combinatorial methods, by linear algebraic methods, or by polyhedral methods. The rst of these three approaches yielded the rst (and to date only) proof of the SPGC; the other two remain promising to consider...

متن کامل

Even pairs and the strong perfect graph conjecture

We will characterize all graphs that have the property that the graph and its complement are minimal even pair free. This characterization allows a new formulation of the Strong Perfect Graph Conjecture. The reader is assumed to be familiar with perfect graphs (see for example [2]). A hole is a cycle of length at least five. An odd hole is a hole that has an odd number of vertices. An (odd) ant...

متن کامل

Basic perfect graphs and their extensions

In this article, we present a characterization of basic graphs in terms of forbidden induced subgraphs. This class of graphs was introduced by Conforti, Cornuéjols and Vušković [3], and it plays an essential role in the announced proof of the Strong Perfect Graph Conjecture by Chudnovsky, Robertson, Seymour and Thomas [2]. Then we apply the Reducing Pseudopath Method [13] to characterize the su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006